

The Alabama Association of Assessing Officials

LiDAR (Light Detection and Ranging)

Presentation Objectives

- Focus What is LiDAR?
- Discussion Areas:
 - How does LiDAR work?
 - Types of LiDAR
 - Terminology
 - Benefits of LiDAR

HOW DOES LIDAR WORK?

National Ecological Observatory Network. November 6, 2014. How Does LiDAR Remote Sensing Work? Light Detection and Ranging [Video file]. Courtesy: Battelle. Retrieved from https://youtu.be/EYbhNSUnIdU.

How does LiDAR work?

- LiDAR instruments can rapidly measure the Earth's surface.
- Some systems can send more than 1,000,000 pulses per second.
- Result is a densely spaced network of elevation points used to generate a three-dimensional representation of the Earth's surface and its features.

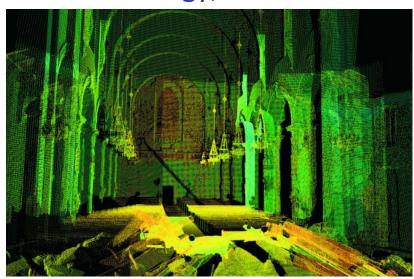
TYPES OF LIDAR

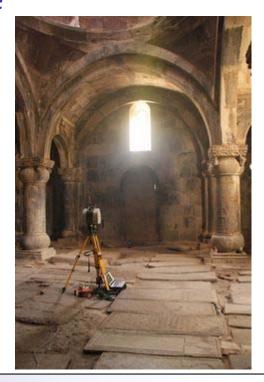
- There are two basic types of LiDAR
 - Airborne
 - Terrestrial

- Airborne LiDAR
 - System installed
 - Fixed-wing aircraft most common and cost effective
 - Helicopter higher accuracy over larger areas and air density/pollutant measurements
 - Two types of Systems
 - Topographic LiDAR
 - Used to derive surface models for use in survey assessments, forestry, or urban planning
 - Bathymetric LiDAR
 - Acquisition that is water penetrating

- Terrestrial LiDAR
 - Collects very dense and highly accurate points, which allows precise identification of objects
 - Two types
 - Mobile
 - Static

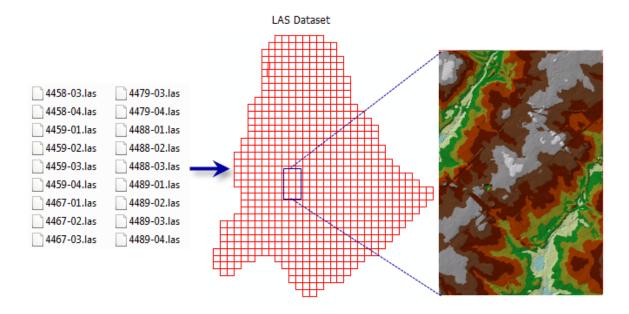
- Terrestrial LiDAR
 - Mobile
 - Mounted on a moving vehicle





- Analyze road infrastructure
- Locate encroaching overhead wires, limbs, etc.

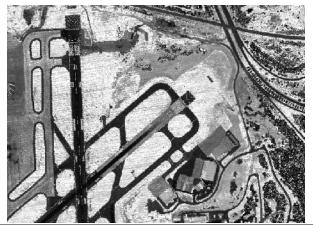
- Terrestrial LiDAR
 - Static
 - Mounted on a tripod or stationary device
 - Used to develop point cloud for mining, archaeology, etc.



TERMINOLOGY

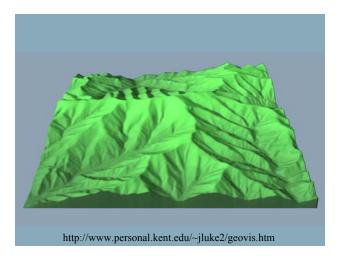
- LAS (Laser file format)
 - Binary file format for the exchange of 3-dimensional point cloud data between data users.

http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-a-las-dataset.htm

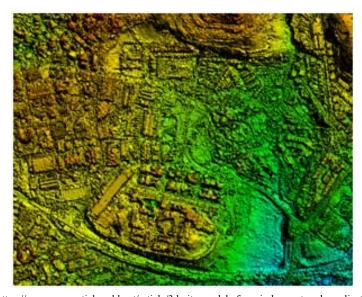

- RMSE (Root Mean Square Error)
 - A statistical measure that quantifies the level of error in the data.
 - Measures how much error there is between two datasets comparing a predicted value and an observed or known value.

RMSE Formula:

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{x}_i)^2}$$



- Intensity Data
 - The measurement of the strength of the return from the laser.
 - Values represent how well the object reflected the wavelength of light used by the laser system.
 - Resemble a black and white photo.

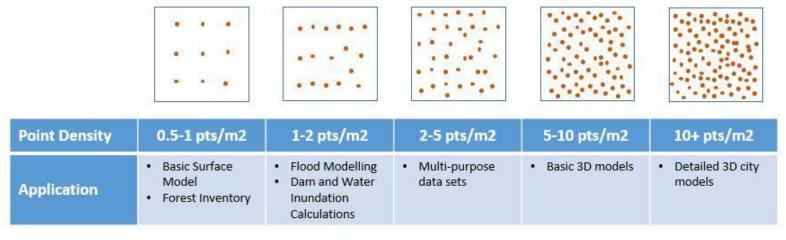


- DEM (Digital Elevation Model)
 - The representation of continuous elevation values over a topographic surface by a regular array of zvalues, referenced to a common datum.
 - Typically used to represent terrain relief (bare earth)

- DSM (Digital Surface Model)
 - Elevation model that includes the tops of buildings, trees, and any other objects
 - Only shows ground where there is nothing over it

https://www.geospatialworld.net/article/3d-city-models-for-wireless-network-application/

- IMU (Inertial Measurement Unit)
 - Used to determine the attitude of the aircraft as the sensor is taking measurements.
 - Used to provide position and orientation for camera shots and laser measurements. (roll, pitch, and yaw)


https://www.e-education.psu.edu/geog481/11_p5.html

- Return Number (First/Last Return)
 - Many LiDAR systems are capable of capturing the first, second, third, and ultimately the "last" return from a single laser pulse
 - Used to determine what the reflected pulse is from (e.g., ground, tree, understory)

- Point Spacing
 - How close the laser points are to each other
 - Equivalent to the pixel size of an aerial image
 - Point spacing determines the resolution of derived gridded products

http://felix.rohrba.ch/en/2015/point-density-and-point-spacing/

BENEFITS OF LIDAR

Benefits of LiDAR

- Data can be collected quickly with very high accuracy.
- Surface data has a higher sample density. The high sample density improves results for certain applications such as floodplain delineation.
- Ability to collect elevation data in a dense forest, where photogrammetry fails to reveal the accurate terrain surface due to dense canopy cover.

Benefits of LiDAR

- Data can be used to calculate timber areas which could be used when determining current use values.
- LiDAR DEMs can be used for orthorectification.
- Data can be used for building change detection from year to year.
- Coastal change detection.

Sources to Access Current and Future Publicly Available LiDAR Data

- § U.S. Department of the Interior | U.S. Geological Survey (USGS) The National Map https://viewer.nationalmap.gov/basic/?basemap=b1&category=ned,nedsrc&title=3DEP%20View
- § United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) Geospatial Data Gateway https://datagateway.nrcs.usda.gov/
- § United States Interagency Elevation Inventory https://coast.noaa.gov/inventory/
- § NOAA Digital Coast Data Access Viewer https://www.coast.noaa.gov/dataviewer/#/

Copies of this presentation can be found on the Alabama Department of Revenue website.

THE END